
WWW.LINUX-MAGAZINE.COM

L
IN

U
X

 M
A

G
A

Z
IN

E
 IS

S
U

E
 2

9
7

A
U

G
U

S
T

 2
0

2
5

Cleaning U
p SD

esk G
im

p 3.0 M
onitor A

M
D

 G
PU

s nfty v02enc notify-send Chim
eraO

S Inform

Gimp 3.0: The great free image
editor rolls out a major update

ChimeraOS: Play Steam,
GoG, and Epic games with
this versatile gaming OS

Inform: Interactive
fiction in Linux

ISSUE 297 – AUGUST 2025

ntfy: Push network alerts
to your smartphone
Play music with a

Pi Pico
notify-send: Get

updates from remote
Rasp Pis and Arduinos 10 TANTALIZING

FREE APPS!

DVD
INSIDE+

Find the forgotten files that
are clogging your system

Cleaning Up

Create interactive fiction with Inform

Storyteller

might appreciate it, but it has an unmatched
power to uplift and inspire those who do.

(Or, thinking of an old saying about The Velvet
Underground, while not many people discover
parser IF, everyone who does launches their own
game studio.)

The Role of Inform
One technology that has persevered from the ear-
liest days of the IF community is Inform [3], a lan-
guage and development environment for creating
parser games. Originally released by Graham Nel-
son in 1993, it iterated through a complete rewrite
with its version 7 in 2006 and, since 2022, has ex-
isted as an Artistic License 2.0 open source proj-
ect whose development Nelson continues to lead.

Inform’s major version number has since
grown into double digits, but its user community
still calls it “Inform 7” when they want to distin-
guish post-2006 Inform from its very different
predecessors. Version 7 of Inform introduced
two new technologies: a remarkable natural-lan-
guage syntax that Nelson designed around Don-
ald Knuth’s “literate programming” paradigm and
a book-shaped IDE with a focus on rich docu-
mentation and an almost eccentric level of
chatty expressiveness in its terminal output and
error reporting.

An Example Inform Game
Some masterpieces of parser-driven fiction, such
as Emily Short’s intrigue-laden Counterfeit Mon-
key or Michael S. Gentry’s Lovecraftian epic An-
chorhead, describe complex worlds of locations
and characters and interwoven plots that can re-
quire many hours of focused play to navigate
through.

And then there’s the example game I wrote for
this article, Penguin Security Protocols, that you
can play through in about one minute. It has only
one scene, one location, one actor, and a victory
condition that most players would not find partic-
ularly hard to accomplish. Even so, it presents a
glimpse of what a parser IF made with Inform

I nteractive fiction (IF) is one of the most vener-
able super genres of digital creativity, an art
form that has existed for almost as long as

computers have been able to send and receive
text. With its deepest roots in mainframe-and-
teletype entertainments from the 1960s and
1970s such as Hunt the Wumpus and ELIZA, IF
today encompasses hypertext games, visual nov-
els, and a swirling variety of commercial and ex-
perimental work that focuses on text as its core
interactive element.

Ages of Interactive Text
For much of the 1980s, IF often defined the cut-
ting edge of computer games. A typical IF game
of that era often adapted the most prominent UI
of that era, one that’s quite familiar to readers of
this magazine: the command-line prompt. Titles
such as Zork and Wishbringer published by Info-
com, or The Hobbit by Melbourne House, let play-
ers explore entirely text-based worlds on their
home computers, typing in verb-first text com-
mands such as GO NORTH, GET LAMP, or ASK MATILDA
ABOUT GENETIC RECOMBINATION for the game to parse
and respond to. After the commercial viability of
these “parser games” dried up in the 1990s, a hob-
byist community formed on the young Internet to
keep this archaic art form alive, developing tools
and sharing resources that allowed contemporary
audiences to continue playing these games – and
making new ones.

In the decades since, the vibrant IF community
has invented many playful technologies inspired
by the parser games of yore, including the acces-
sible hypertext kit Twine [1] and the narrative
scripting language Ink [2]. These tools allow rapid
development using modern design principles and
game-engine integration, and some have gone on
to commercial success. And yet the venerable
parser game remains dear to the IF community,
which often celebrates new games made in the
old style, even if their audience is relatively limited.
I like to think of a new parser IF game as a fresh
jazz composition, or a new poem: Not everyone

Inform is your guide to the strange worlds of interactive fiction
and text-driven games. BY JASON MCINTOSH

AUGUST 2025	 ISSUE 297	 LINUX-MAGAZINE.COM88

LINUX VOICE TUTORIAL – INTERACTIVE FICTION

looks like – and, more pertinent for this article,
what its source code looks like.

First I’ll present a complete run through of the
game in action. In the following transcript, the bold
statements preceded with a > character represents
player input. The rest is the game’s textual output.

The Transcript
After a long morning of system administration, it’s
time for a well-earned nap. But even sleeping pen-
guins need to mind basic operational security!

Server Room
A chilly room filled with the gentle hum of Linux

servers. The air conditioning keeps things at a per-
fect penguin-friendly temperature.

Your Linux workstation sits against the wall,
running smoothly.

The monitor displays your Linux desktop.
A silvery fish rests on a small plate.
A comfortable beanbag chair sits in the corner,

perfect for penguin naps.
> listen to the servers
These powerful machines run various critical

services. Their cooling fans create a constant
white noise that’s surprisingly soothing to a pen-
guin’s ears.

> sleep
That herring looks awfully tasty. Shouldn’t you

attend to it before your nap?
> look at the herring
A plump, fresh herring – a perfect penguin treat.

Its scales glisten under the server room lights.
> eat herring
You’re stopped short when you remember the

first rule of penguin security protocols: Never
leave your workstation unprotected while eating
or sleeping!

> examine the workstation
A powerful machine running your favorite Linux

distribution. The monitor displays a terminal win-
dow with several SSH sessions open.

The workstation is currently switched on.
> turn off workstation
You shouldn’t turn off your workstation com-

pletely – you have important penguin work to do
later!

Perhaps turning on the screensaver would be
more appropriate.

> turn on screensaver
You quickly press the keyboard shortcut to acti-

vate your screensaver. Good security-conscious
penguin!

> eat the herring
(first taking the herring)
The herring is delicious! Your tummy is now full

and you feel sleepy.
> sleep
You settle into the beanbag with a satisfied

penguin sigh. With a full belly and your

workstation properly secured, you drift off to a
well-deserved nap. Victory for security-conscious
penguins everywhere!

The Source
The preceding transcript is my lead-in to letting
you see the complete source code listing, which is
in the box entitled “The Story.”

If this somewhat fishy snack nonetheless whets
your appetite for more, then let’s talk about how to
get Inform installed on your own Linux machine
and then take a brief tour of its unusual IDE.

Install Inform on Linux
Because Inform is a mature open source project,
you have several installation options of varying
complexity.

If you have Flatpak set up on your system, then
you can install Inform with a click or two through
Flathub. For example, on a stock KDE Plasma
setup, you can find a one-step Inform installer by
clicking the Discover icon in your desktop panel
then searching for Inform. Or, from a terminal win-
dow, run the following command:

flatpak install flathub com.inform7.IDE

You can also directly download .flatpak, .deb, or
.rpm packages from the Inform releases page on
GitHub [4].

Of course, you can always attempt to download,
compile, and install Inform from source, but this
will likely prove quite challenging, for several rea-
sons. First of all, building Inform is a project in it-
self, requiring you to prepare a number of custom
intermediate tools for your system before you can
actually build the compiler. And beyond that, the
IDE for every OS supported by Inform exists as its
own software project, with its own maintenance
team. Philip Chimento leads the Inform-on-Linux
project, with its repository at GitHub [5].

If you want to try the very latest pre-release fea-
tures and tweaks, or if you hunger with technical
curiosity for how Inform is built, then by all means
explore the two repositories’ source code! The
core Inform source, in particular, can make for a
fascinating software-architectural study, because
Inform itself is developed under the very same lit-
erate-programming philosophies that it applies to
its language’s syntax.

To actually get started creating with Inform,
however, one of the pre-built packages probably
suits your needs better.

Explore the Inform IDE
To see the Inform IDE from a fresh start, launch
the Inform application and create a new Inform
project by following the series of dialogs that it
presents. This brings you to the full, twin-paned

LINUX-MAGAZINE.COM	 ISSUE 297	 AUGUST 2025 89

TUTORIAL – INTERACTIVE FICTION LINUX VOICE

syntax, operating the IDE, and development
workflows

n �The Inform Recipe Book, a catalog of Inform
code snippets demonstrating the many core
features of the language, as well as various
combinatorial techniques that bring together
these ingredients in interesting ways
You can start at the first page of Writing with In-

form and start reading, if you want. You’ll soon
discover that the two volumes cross-reference
one another frequently, and the Examples and
General Index tabs at the top of the Documenta-
tion pane give you more ways to explore the docs.

IDE window, resembling Figure 1. By default, the
left pane contains your project’s source code, and
the right pane shows the title page to Inform’s
deep documentation.

Read (and search) the docs
If you’re already intrigued, then at this point you
may want to pause and click around that docu-
mentation a little. As the title page makes clear,
the documentation contains two separate but in-
tertwined volumes:
n �Writing with Inform, an explanatory guide to

the whole system, including the language

When play begins, say “After a long morning of sys-
tem administration, it’s time for a well-earned nap.
But even sleeping penguins need to mind basic opera-
tional security!”
Chapter 1 – The server room, and its sysadmin
The Server Room is a room. “A chilly room filled
with the gentle hum of Linux servers. The air condi-
tioning keeps things at a perfect penguin-friendly
temperature.”
Tux is a person in the Server Room. The player is
Tux. The description of Tux is “You are a rotund
penguin with a sleek black back and crisp white
front. Your natural tuxedo makes you both elegant
and perfectly dressed for system administration du-
ties.” Understand “penguin” or “admin” or “sysadmin”
or “system administrator” as Tux.
The servers are scenery in the Server Room. The de-
scription is “These powerful machines run various
critical services. Their cooling fans create a con-
stant white noise that’s surprisingly soothing to a
penguin’s ears.” Understand “server” or “racks” or
“machines” or “fans” as the servers. Instead of lis-
tening, try examining the servers.
Chapter 2 – Stuff that’s in the server room
The workstation is a device in the Server Room. It
is fixed in place and switched on. “Your Linux work-
station sits against the wall, running smoothly.”
The description is “A powerful machine running your
favorite Linux distribution. The monitor displays a
terminal window with several SSH sessions open.” Un-
derstand “computer” or “machine” or “terminal” or
“pc” or “desktop” or “linux box” as the workstation.
The screensaver is a device in the Server Room. It
is fixed in place and switched off. “The monitor
displays your Linux desktop[if the screensaver is
switched on]. The screen is currently protected by
your favorite animated penguin screensaver[end
if].” The description is “Your screensaver features
animated penguins sliding across ice floes. Not only
is it adorable, but it also prevents unauthorized
access to your system.”
The herring is an edible thing in the Server Room. “A
silvery fish rests on a small plate.” The description
is “A plump, fresh herring – a perfect penguin treat.
Its scales glisten under the server room lights.” Un-
derstand “fish” or “snack” or “food” or “treat” or
“lunch” or “silver fish” as the herring.

The blue beanbag is a supporter in the Server Room.
“A comfortable beanbag chair sits in the corner,
perfect for penguin naps.” It is enterable. The de-
scription is “A large, navy blue beanbag chair. It’s
positioned away from the server fans for optimal
napping conditions.” Understand “chair” or “bean
bag” or “seat” or “bed” as the beanbag. Instead of
sleeping, try entering the beanbag.
Chapter 3 – What you can do with all that stuff
Instead of switching off the workstation: say “You
shouldn’t turn off your workstation completely – you
have important penguin work to do later! Perhaps
turning on the screensaver would be more appropri-
ate.”;
After switching on the screensaver: say “You quickly
press the keyboard shortcut to activate your screen-
saver. Good security-conscious penguin!”.
After switching off the screensaver: say “You deac-
tivate the screensaver with your secure pass-
phrase.”.
Instead of eating the herring when the screensaver
is switched off, or entering the beanbag when the
screensaver is switched off: say “You’re stopped
short when you remember the first rule of penguin
security protocols: never leave your workstation
unprotected while eating or sleeping!”;
Instead of entering the beanbag when the herring is
in the server room: say “That herring looks awfully
tasty. Shouldn’t you attend to it before your nap?”
After eating the herring when the screensaver is
switched on: say “The herring is delicious! Your
tummy is now full and you feel sleepy.”;
After entering the beanbag when the screensaver is
switched on and the herring is not carried and the
herring is not in the Server Room: say “You settle
into the beanbag with a satisfied penguin sigh. With
a full belly and your workstation properly secured,
you drift off to a well-deserved nap. Victory for
security-conscious penguins everywhere!”; end the
story finally saying “You’ve maintained proper se-
curity protocols!”;
After entering the beanbag when the screensaver is
switched on and the player carries the herring: say
“You can’t get comfortable with a fish in your flip-
pers. Maybe you should eat it first?”;
Test winning with “switch on screensaver / take her-
ring / eat herring / get on beanbag”.

The Story

AUGUST 2025	 ISSUE 297	 LINUX-MAGAZINE.COM90

TUTORIAL – INTERACTIVE FICTIONLINUX VOICE

Each item in The Inform Recipe Book is actually
the complete ready-to-compile source to a tiny IF
game, with controls that instantly copy the code
into your source pane. This allows rapid hands-on
experimentation and iteration while you learn the
system.

A dedicated search bar at the top of the IDE
window rounds out Inform’s documentation UI,
working much as you’d expect. However, the Gen-
eral Index tab is worth your time to get familiar
with. It contains a remarkable and carefully cu-
rated traditional index of every significant concept
raised in the documentation, arranged alphabeti-
cally – that is, in the fashion of a traditional index
in the back of the print edition of a thorough refer-
ence manual. Beyond being a most unusual arti-
fact to discover in purely digital documentation,
this index gives a hint of the relaxed and scholarly
attitude that Inform IDE expresses throughout the
creative process.

Inform tries to keep you in the mindset of a
writer working with human language, producing a
work that you intend other humans to understand
and enjoy, with a layer of machine interpretation in
the middle. As much as possible, the IDE favors
thoughtful expressiveness, and even a sort of
rambling exploration, rather than a more typical
programming environment’s stance of maximiz-
ing digital efficiency.

Tour the other tabs
Let’s look at the other tabs that run down the
“spine” of the two IDE panes:
n �Results displays the compiler’s rather chatty

terminal output from its most recent attempt to
compile your story source.

n �Index gives you insight into the way that Inform
sees your story, after you’ve compiled it. You
can flip through lists of rules, scenes, charac-
ters, and objects that your game has defined
and view some cataloguing metadata that In-
form automatically generates for your work.

n �Skein and Transcript help you define, tune, and
debug the paths that players should be able to
take through your story, making sure that the
game’s reactions and responses to various text
inputs match what you expect. Figure 2 shows
my own development skein for Penguin Secu-
rity Protocols. (A “real” game’s skein is much
more tangled than this simple sample.)

n �Extensions lists community-authored exten-
sions to the Inform language that you have in-
stalled. Inform for Linux ships with over a dozen
extensions, and you can find more online. (The
IDE does have a Public Library button intended
to let you more easily browse available exten-
sions, but at the time of this writing, it doesn’t
always work well with Linux IDE – particularly
when installed through Flatpak.)

n �Finally, Settings lets you fine-tune various be-
haviors of the compiler, including an option to
lock down the game’s randomizer seed while
running tests.
For a much more thorough guide to how all of

these work, see the Inform documentation.

A typical Inform development workflow
Similar to any software development project, you
spend much of your time with the default two
panes open: your story source in one and the sys-
tem documentation in the other.

As you start to build out your world, though,
you’ll spend more time with the Skein and Tran-
script panes visible, letting you carefully grow and
trim a dangling spider plant of nodes and paths,
one that represents all the major routes a player
can traverse through your interactive story.

With the skein, you can leap to any node in a
click, letting you fast-forward through time and
space within your own story-world to help you

Figure 1: The Inform IDE
with a brand new project
loaded up.

Figure 2: One possible skein
of the sample game’s
branching paths.

LINUX-MAGAZINE.COM	 ISSUE 297	 AUGUST 2025 91

TUTORIAL – INTERACTIVE FICTION LINUX VOICE

thoughtful players as they poke and prod around
the little world of words that I’ve built.

Inform and version control
While the IDE lacks any built-in version control
support, you can use your usual version-control
workflow with an Inform project.

As illustrated by Figure 3, your Inform project
has two files worth checking into your version
control system, both located in the .inform direc-
tory that you created the first time you saved your
project:
n �Source/story.ni is a text file containing the

source code of your story
n �Skein.skein is an XML file defining your game’s

skein and transcript data, crucial for designing
your testable pathways through the work
Other files that you might consider adding to

version control include the following, especially if
you plan to share your source or otherwise build
the project on more than one machine:
n �Any multimedia files, such as images or sound

effects, that you add to your game’s resources
n �uuid.txt, containing a UUID that Inform gener-

ates for your game’s catalog metadata
n �Any Inform extensions that you import into

your game, found in PROJECT_NAME.materials/Ex-
tensions, to enforce consistent versioning for
those extensions
The other files and directories that make up

your project are generated by Inform as you com-
pile or test your game and don’t benefit much
from additional version control.

Release and Distribute Your Game
When you’re ready to start letting others explore
your interactive story, Inform gives you plenty of
options for creating playable release files. And
when you’re ready to find a larger audience – as
well as a community of willing testers and friendly
fellow authors – you can take advantage of many
free resources for perfecting your work and then
sharing it with the world.

Create a release
Inform makes sharing an independently playable
copy of your work relatively simple: Press the Re-
lease button at the top of the IDE. If the game suc-
cessfully compiles, then Inform creates release
files and tells you all about it, as shown in Figure 4.

By default, the format of an Inform release is a
single file in .blorb format, which you (or your tes-
ters) can play using a dedicated IF interpreter appli-
cation, such as the modern and graphical Lectrote
[6] or the terminal-friendly throwback Frotz [7].

However, as Figure 4 also illustrates, Inform in-
vites you to add various imperative sentences to
your source in order to trigger additional release
formats and options. In particular, telling Inform

further test and develop it. By pairing the skein
with the Transcript tab, you can ensure that each
scrap of conditionally displayed text that you’ve
written gets displayed exactly when and where
you expect, and under the correct
circumstances.

Invariably, this means lots of playtesting. Like
any kind of game development, the interactive
fiction workflow ideally has you letting trusted
testers play with early drafts of your work, finding
flaws and suggesting improvements. In particu-
lar, parser-based IF is infamous for easily falling
into a “guess the verb” trap, where players try in-
puts that seem quite reasonable within the fic-
tion, but which the author hadn’t foreseen, lead-
ing to a disappointingly generic and frustrating
“You can’t do that” response. A polished parser
game anticipates a wide variety of reasonable in-
puts, helping the player feel understood and
engaged.

In my own experience as an IF author, the skein
of a game’s final draft largely comprises pathways
I added based on testers’ suggestions, letting the
game respond satisfyingly to curious and

Figure 3: The minimum files
to check into version control.

Figure 4: Releasing Penguin
Security Protocols.

AUGUST 2025	 ISSUE 297	 LINUX-MAGAZINE.COM92

TUTORIAL – INTERACTIVE FICTIONLINUX VOICE

to Release along with a website and an inter-
preter prompts it to publish your game as a fully
self-contained website, ready to publish on the
web or even just send to someone for local play.
Testers and players often find this most conve-
nient, because it lets them play your game in any
modern browser without the need to find and in-
stall a separate interpreter application.

Find playtesters, audience, and inspiration
The Interactive Fiction Community Forum [8] is a
lively hub for discussing and sharing all things IF.
Operated and moderated by volunteers from the
nonprofit Interactive Fiction Technology Founda-
tion, the forum offers a number of spaces for dis-
cussing every aspect of playing, sharing, and creat-
ing IF work. This includes sub-forums for learning
specific creative technologies – Inform is most
certainly included – and for finding playtesters.

From the forums, you can continue your dive
into the rich world of IF resources by browsing the
Interactive Fiction Database [9], a vast catalog of
creative work that spans five decades and thou-
sands of entries for play and study. This includes
lots of titles written in Inform – including those
with published source code that you can browse
for further illumination with your own work.

To browse the sublimely readable source code
of an Inform masterwork whose complexity sits
at the polar extreme from this article’s trivial ex-
ample, see the public repository for Counterfeit
Monkey [10]. This repository also serves as a
model for files worth checking into version con-
trol, as discussed earlier in this article.

Your Journey Begins
Whether you’re quite familiar with the Zork-ish text
games of old, or whether you’ve never encountered
language-driven video games quite like this before,

I hope this article has inspired you to investigate
the creative potential of Inform on Linux.

In a way, IF has a particular affinity with Linux:
two technologies rooted deep in the previous
century that continue to exert influence over their
respective fields today. To be sure, the obscure
underground empire of creativity and community
offered by contemporary IF welcomes the sort of
literate coders (or code-minded writers) that
Linux tends to attract, as well! If you find yourself
inhabiting this kind of creative crossover space,
then I invite you to pick up a tool such as Inform
and see what strange and wordy magic you can
make, too. n n n

[1]	� Twine: https://​twinery.​org

[2]	� Ink: https://​www.​inklestudios.​com/​ink/

[3]	� Inform: https://​inform7.​com

[4]	� Inform releases:
https://​github.​com/​ganelson/​inform/​releases

[5]	� Inform-on-Linux project:
https://​github.​com/​ptomato/​inform7‑ide

[6]	� Lectrote: https://​github.​com/​erkyrath/​lectrote

[7]	� Frotz: https://​davidgriffith.​gitlab.​io/​frotz/

[8]	� Interactive Fiction Community Forum: https://​
intfiction.​org

[9]	� Interactive Fiction Database: https://​ifdb.​org

[10]	� Counterfeit Monkey:
https://​github.​com/​i7/​counterfeit‑monkey

Info

Jason McIntosh is a writer who lives in New York
City. His personal website is https://​jmac.​org.

The Author

n n n

LINUX-MAGAZINE.COM	 ISSUE 297	 AUGUST 2025 93

TUTORIAL – INTERACTIVE FICTION LINUX VOICE

https://twinery.org
https://www.inklestudios.com/ink/
https://inform7.com
https://github.com/ganelson/inform/releases
https://github.com/ptomato/inform7-ide
https://github.com/erkyrath/lectrote
https://davidgriffith.gitlab.io/frotz/
https://intfiction.org
https://intfiction.org
https://ifdb.org
https://github.com/i7/counterfeit-monkey
https://jmac.org

